The Nucleotide Excision Repair Pathway Protects Borrelia burgdorferi from Nitrosative Stress in Ixodes scapularis Ticks

نویسندگان

  • Travis J. Bourret
  • Kevin A. Lawrence
  • Jeff A. Shaw
  • Tao Lin
  • Steven J. Norris
  • Frank C. Gherardini
چکیده

The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is unclear whether ROS and RNS pose a significant challenge to B. burgdorferi in vivo. In this study, we screened a library of B. burgdorferi strains with mutations in DNA repair genes for increased susceptibility to ROS or RNS in vitro. Strains with mutations in the methyl-directed mismatch repair gene mutS1 are hypersensitive to killing by ROS, while strains lacking the nucleotide excision repair (NER) gene uvrB show increased susceptibility to both ROS and RNS. Therefore, mutS1-deficient and uvrB-deficient strains were compared for their ability to complete their infectious cycle in Swiss Webster mice and I. scapularis ticks to help identify sites of oxidative and nitrosative stresses encountered by B. burgdorferi in vivo. Both mutS1 and uvrB were dispensable for infection of mice, while uvrB promoted the survival of spirochetes in I. scapularis ticks. The decreased survival of uvrB-deficient B. burgdorferi was associated with the generation of RNS in I. scapularis midguts and salivary glands during feeding. Collectively, these data suggest that B. burgdorferi must withstand cytotoxic levels of RNS produced during infection of I. scapularis ticks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tick salivary protein Salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates.

Borrelia burgdorferi, the agent of Lyme disease, is transmitted by ticks. During transmission from the tick to the host, spirochetes are delivered with tick saliva, which contains the salivary protein Salp15. Salp15 has been shown to protect spirochetes against B. burgdorferi-specific antibodies. We now show that Salp15 from both Ixodes ricinus and Ixodes scapularis protects serum-sensitive iso...

متن کامل

An Ixodes ricinus Tick Salivary Lectin Pathway Inhibitor Protects Borrelia burgdorferi sensu lato from Human Complement.

INTRODUCTION We previously identified tick salivary lectin pathway inhibitor (TSLPI) in Ixodes scapularis, a vector for Borrelia burgdorferi sensu stricto (s.s.) in North America. TSLPI is a salivary protein facilitating B. burgdorferi s.s. transmission and acquisition by inhibiting the host lectin complement pathway through interference with mannose binding lectin (MBL) activity. Since Ixodes ...

متن کامل

Preferential protection of Borrelia burgdorferi sensu stricto by a Salp15 homologue in Ixodes ricinus saliva.

BACKGROUND Ixodes ticks are the main vectors for Borrelia burgdorferi sensu lato. In the United States, B. burgdorferi is the sole causative agent of Lyme borreliosis and is transmitted by Ixodes scapularis. In Europe, 3 Borrelia species-B. burgdorferi, B. garinii, and B. afzelii-are prevalent, which are transmitted by Ixodes ricinus. The I. scapularis salivary protein Salp15 has been shown to ...

متن کامل

Borrelia burgdorferi not detected in widespread Ixodes scapularis (Acari: Ixodidae) collected from white-tailed deer in Tennessee.

Lyme disease (LD), caused by the bacterium Borrelia burgdorferi and transmitted in the eastern United States by blacklegged ticks, Ixodes scapularis Say, is classified as nonendemic in Tennessee and surrounding states in the Southeast. Low incidence of LD in these states has been attributed, in part, to vector ticks being scarce or absent; however, tick survey data for many counties are incompl...

متن کامل

Passive Surveillance of Ixodes scapularis (Say), Their Biting Activity, and Associated Pathogens in Massachusetts

A passive surveillance of tick-borne pathogens was conducted over a 7-year period (2006-2012), in which a total of 3551 ticks were submitted to the University of Massachusetts for PCR testing. The vast majority of these ticks were Ixodes scapularis from Massachusetts (N = 2088) and hence were the focus of further analysis. Two TaqMan duplex qPCR assays were developed to test I. scapularis ticks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016